Lawrence Livermore National Laboratory

King, W.E., Barth, H.D., Castillo, V.M., Gallegos, G.F., Gibbs, J.W., Hahn, D.E., Kamath, C., Rubenchik, A.M., 2014. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. Journal of Materials Processing Technology 214, 2915–2925.

Boley, C., Khairallah, S., Rubenchik, A.M., 2014. Modeling of Powder Absorption in Additive Manufacturing, CLEO: 2014. Optical Society of America, San Jose, California, p. AM1L.5.

Khairallah, S.A., Anderson, A., 2014. Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder. Journal of Materials Processing Technology, (in press) DOI. 10.1016/j.jmatprotec.2014.06.001.

Kamath, C., El-dasher, B., Gallegos, G., King, W., Sisto, A., 2014. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. The International Journal of Advanced Manufacturing Technology, 1-14 DOI. 10.1007/s00170-014-5954-9.

Wu, A.S., Brown, D.W., Kumar, M., Gallegos, G.F., King, W.E., 2014. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall and Mat Trans A, 1-11 DOI. 10.1007/s11661-014-2549-x.

Hodge, N.E., Ferencz, R.M., Solberg, J.M., 2014. Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech, 54, 33-51. DOI. 10.1007/s00466-014-1024-2.

Boley, C., Khairallah, S., Rubenchik, A., 2015. Calculation of laser absorption by metal powders in additive manufacturing. Applied Optics 54, 2477.

Carlton, H.D., Haboub, A., Gallegos, G.F., Parkinson, D.Y., MacDowell, A.A., 2015. Damage Evolution and Failure Mechanisms in Additively Manufactured Stainless Steel. Materials Science and Engineering.

King, W., Anderson, A.T., Ferencz, R.M., Hodge, N.E., Kamath, C., Khairallah, S.A., 2015. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 31, 957-968.

Rubenchik, A., Wu, S., Mitchell, S., Golosker, I., LeBlanc, M., Peterson, N., 2015. Direct measurements of temperature-dependent laser absorptivity of metal powders. Applied Optics 54, 7230-7233 DOI. 10.1364/AO.54.007230.

Matthews, M.J., Rubenchik, A., Guss, G., Nielsen, N., 2015. Characterization of melt-flow dynamics in selective laser melting (SLM) processes, CLEO:2015. Optical Society of America, p. paper ATh3A.5.

Nourgaliev, R., Luo, H., Weston, B., Anderson, A., Schofield, S., Dunn, T., Delplanque, J.P., 2016. Fully-implicit orthogonal reconstructed Discontinuous Galerkin method for fluid dynamics with phase change. J Comput Phys 305, 964-996 DOI.

Kamath, C., 2015. On the Use of Data Mining Techniques to Build High-Density, Additively-Manufactured Parts. Information Science for Materials Discovery and Design 225, 141.

King, W.E., Anderson, A.T., Ferencz, R.M., Hodge, N.E., Kamath, C., Khairallah, S.A., Rubenchik, A.M., 2015. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews 2, 041304 DOI. doi:

Matthews, M. J., A. Rubenchik, G. Guss and N. Nielsen (2015). Characterization of melt-flow dynamics in selective laser melting (SLM) processes. CLEO:2015, Optical Society of America: paper ATh3A.5.

Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E., 2016. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia 108, 36-45 DOI.

Kamath, C., 2016. Data mining and statistical inference in selective laser melting. The International Journal of Advanced Manufacturing Technology, 1-19 DOI. 10.1007/s00170-015-8289-2.

Matthews, M.J., Guss, G., Khairallah, S.A., Rubenchik, A.M., Depond, P.J., King, W.E., 2016. Denudation of metal powder layers in laser powder bed fusion processes. Acta Materialia 114, 33-42 DOI.

Hodge, N.E., Ferencz, R.M., Vignes, R.M., 2016. Experimental Comparison of Residual Stresses for a Thermomechanical Model for the Simulation of Selective Laser Melting. Additive Manufacturing DOI.